A GENERALIZED FORMULA FOR THE TRANSFORM OF A PRODUCT OF FUNCTIONS

(OBOBSHCHENNAIA FORMULA DLIA IZOBRAZHENIIA PROIZVEDENIIA ORIGINALOV)

PHM Vol.22, No.5, 1958, p. 706
N. M. BORODACHEV
(Kuibyshev)

```
(Received 20 August 1957)
```

A generalization will be given of a formula of Natanzon's [1] for the transform of a product of functions to the particular case when one of the functions in the product is complicated. Let

$$
\begin{equation*}
\Phi(p)=\int_{0}^{\infty} F[q(t)] \psi(t) e^{-\gamma p^{t}} d t \tag{1}
\end{equation*}
$$

On the basis of a known theorem, thanks to Efros, we have

$$
\begin{equation*}
F[q(t)] \psi(t)=\int_{0}^{\infty} e^{-i u} d u \int_{0}^{\infty} f(v) g(u, v) d v \tag{2}
\end{equation*}
$$

where

$$
F(p)=f(t), \quad \psi(p) e^{-v q(p)}=g(t, p)
$$

Substituting (2) into equation (1), we obtain

$$
\Phi(p)=\int_{0}^{\infty} \int_{0}^{\infty} \int_{0}^{\infty} f(v) g(u, c) e^{-l(p, t w)} d t d u d v
$$

Interchanging the order of integration in this formula and noting that

$$
\int_{0}^{\infty} g(u, v) e^{-l u} d u=\psi(t) e^{-v q(t)}
$$

we get

$$
\mathrm{T}(p)=\int_{i=0}^{\infty} \int_{0}^{\infty} f(t) \psi(t) e^{-r \cdot(t)-p t} d r d t
$$

Putting $G(p, v)=\psi(t) e^{-v q(t)}$, we finally arrive at the formula

$$
\begin{equation*}
\Phi(p)=\int_{0}^{\infty} f(v) G(p, v) d v \tag{3}
\end{equation*}
$$

As a particular case, we may obtaln from (3) the formula for the transform of a product of functions. In fact, putting $q(t)=t$, we have $G(p, v)=\Psi(p+v)$, where $\Psi(p)=\psi(t)$. and (3) gives

$$
\begin{equation*}
\Phi(p)=\int_{0}^{\infty} p(t) \Psi(t) e^{-p t} d t=\int_{0}^{\infty} f(v) \Psi(p+v) d v=\int_{v}^{\infty} f(v-p) \Psi(v) d v \tag{4}
\end{equation*}
$$

An application to the transformation of Carson-Heaviside's formula, siailar to formula (4), has been given by Natanzon [1].

It is likewise easy to deduce from (3) a formula for the transform of the quotient of two functions. In this case, one has $F(p)=1 / p$ and $f(t)=1$. Then

$$
\begin{equation*}
\mathrm{P}(p)=\int_{0}^{\infty} \frac{\psi(t)}{q(t)} e^{-1 t} d t=\int_{0}^{\infty} G(p, y) d z \tag{6}
\end{equation*}
$$

In a similar manner, We may obtain other particular yersions of the general formula (3).

BIBLIOGRAPHY

1. Natanzon, V.Ia. Formula dlya izobrazheniya proizvedeniya originalov (A formula for the transform of a product of functions). PM Vol. 20. No. 5, 1956.

Translated by J.R.M.R.

